Introduction and Basics in TOH

Dr. Mutua Kilai

Department of Pure and Applied Sciences

Jan-April 2024

Introduction

- The objective of statistics is to make inference about a population based on information contained in the sample.
- Population denotes all items the researcher is interested in.
- **Sample** A subset of the population
- There are two major areas of statistical inference namely:
 - i. Estimation of parameters
 - ii. Testing of hypothesis
- We will develop general methods for testing hypothesis and apply to some common problems.

Basics

- We will consider a random variable X with pdf $f(x; \theta)$ where θ is an unknown parameter.
- **Statistical hypothesis** is a statement or assertion about the distribution of one or more random variables.
- Hypothesis testing is a rule for deciding whether to reject or accept the statistical hypothesis.
- **Null Hypothesis** This represents a theory that has been put forward either because it is believed to be true or because it is used as a basis for argument but has not been proved. Denoted by H_0
- Alternative Hypothesis denoted by H_1 means an opposing theory to the null hypothesis.

Basics Cont'd

- The final conclusion once the test have been carried out is always given in terms of the null hypothesis.
- The two possible conclusions are:
 - i. Reject H_0
 - ii. Fail to reject H_0

Simple and Composite Hypothesis

- A hypothesis is said to be simple if it specifies the population completely i.e it specifies the probability distribution uniquely whereas a composite hypothesis leads to two or more possibilities.
- Examples:

i. Suppose
$$X \sim \mathcal{N}(\mu, 1)$$

$$H_0: \mu = 0
ightarrow X \sim N(0,1)$$

$$H_a: \mu=2 \rightarrow X \sim N(0,2)$$

Both H_0 and H_1 are simple hypothesis.

Cont'd

ii. Suppose $X \sim N(\mu, \sigma^2)$

$$H_0: \mu = 5, \sigma^2 = 25 \rightarrow X \sim N(5, 25)$$

$$H_1: \mu \neq 5, \sigma^2 = 6$$

 H_0 is simple while H_1 is composite.

iii. Suppose $X \sim N(\mu, \sigma^2)$

$$H_0: \mu \le 25, \sigma^2 \le 9$$

$$H_a: \mu > 25, \sigma^2 > 9$$

Both H_0 and H_1 are composite since we do not know the exact values of μ and σ^2

Rejection and Acceptance Regions

- Let $X_1, X_2, ..., X_n$ be a random sample of size n from X. These observations generate a n-dimensional space which we denote by X, a sample space in \mathbb{R}^n
- A statistical test partitions the sample space X into two disjoint subsets ω and $\bar{\omega}$ that if
 - a. $x \in \omega$ we reject H_0
 - b. $x \in \bar{\omega}$ we accept H_0 where $X = (x_1, x_2, ..., x_n)$ is a particular value of the observed vector.
- We call ω the rejection or critical region and $\bar{\omega}$ is called the acceptance region.
- Acceptance region is the set of values for which the null hypothesis is accepted while rejection(critical) region is the set of values for the test statistic for which H₀ is rejected.

Errors in decisions

• There are 2 possible errors:

i. Type I error: Reject H_0 if it is true

ii. Type II error: Accepting H_0 if it is false

	H _o True	H _o False
Reject H _o	Type I Error	Correct Rejection
Fail to Reject H ₀	Correct Decision	Type II Error

- $\alpha = P(Type \ I \ error)$
- $\beta = P(Type\ II\ error)$
- $1 \beta = Power of test$

Significance level of a test

- The significance level of a statistical hypothesis test is a fixed probability of wrongly rejecting the null hypothesis H_0 if infact H_0 is true.
- It is the probability of type I error and is set by the investigator in relation to the consequences of such an error.
- The significance level is usually denoted by α thus $\alpha = P(\text{Type I error})$
- Usually the level of significance is chosen to be 0.001 = 0.1%, 0.01 = 1%, 0.05 = 5%, 0.10 = 10%

P-Value

- The probability value, p-value of a statistical hypothesis is the probability of getting a value of the test statistic at least as extreme as that observed by chance alone if the null hypothesis is true.
- It is the probability of wrongly rejecting null hypothesis if it true.
- We can make a decision on whether to reject or fail to reject H_0 based on the p-value.
- If the p-value is less than 0.05 α level of significance we reject H_0 .

Example 1

Suppose a researcher is to test the hypothesis $\theta=0.90$ against the alternative $\theta=0.60$. Let this test statistic be X, the observed number of successes in n=20 trials. If he will accept the hypothesis if X>15 or otherwise conclude $\theta=0.60$. Obtain the significance level of the test and the probability of obtaining type II error.

Solution

We have the hypothesis

$$H_0: \theta = 0.90$$

VS

$$H_a = 0.60$$

• The critical region is

$$\omega = \{0 \le X \le 14\}$$

• The acceptance region is

$$\bar{\omega} = \{15 \le X \le 20\}$$

Cont'd

The distribution is:

$$f(x,\theta) = {20 \choose x} \theta^{x} (1-\theta)^{20-x}, \quad x = 0, 1, 2...20$$

$$\alpha = P(Typelerror)$$

$$= P(X \in \omega | H_{0}is \ true)$$

$$= P(X < 15 | \theta = 0.90)$$

$$(1)$$

$$f(x,\theta) == {20 \choose x} (0.9)^{x} (0.1)^{20-x}$$

$$= \sum_{x=0}^{14} {20 \choose x} (0.9)^{x} (0.1)^{20-x} = 0.0114$$
(3)

Cont'd

•

$$\beta = P(X \in \bar{\omega} | H_0 is \ false)$$

$$= P(x \in \bar{\omega} | H_1 is \ true)$$

$$= P(X \in \bar{\omega} | \theta = 0.60)$$
(4)

$$f(x,\theta) == {20 \choose x} (0.6)^{x} (0.4)^{20-x}$$

$$= \sum_{x=15}^{20} {20 \choose x} (0.9)^{x} (0.1)^{20-x} = 0.1256$$
(5)

Example 2

If $X \ge 1$ is the critical region for testing $\theta = 0.2$ against $\theta = 1$ on the basis of a single observation from the population whose pdf is

$$f(x,\theta) = \begin{cases} \theta e^{-\theta x} & \text{if } 0 \le X < \theta \\ 0 & \text{otherwise} \end{cases}$$
 (6)

Obtain the values of Type I and Type II errors.

Solution

•

$$H_0: \theta = 2 \text{ vs } H_1: \theta = 1$$

$$\omega = \{X : X \ge 1\} \ \bar{\omega} = \{X : X < 1\}$$

Then

$$lpha = P(Reject \ H_0|H_0 \ is \ true)$$

$$= P(x \in \omega|\omega = 2)$$

$$= P(1 \le X < 2|\theta = 2)$$

Dr. Mutua Kilai | Introduction and Basics in TOH

(7)

Cont'd

•

$$f(x, \theta = 2) = 2e^{-2x}$$

$$= \int_{1}^{\infty} 2e^{-2x} dx$$

$$= -e^{-2x}]_{1}^{\infty}$$

$$= 0 + e^{-2} = 0.1353$$

$$eta = P(accept \ H_0|H_1 \ is \ True) \ = P(x \in ar{\omega}| heta = 1) \ = P(X < 1| heta = 1) \ = f(x, heta = 1) = e^{-x}, x \ge 0 \ = \int_0^1 e^{-x} dx = -e^{-x}]_0^1 = 0.6321$$

Dr. Mutua Kilai | Introduction and Basics in TOH

(8)

(9)

Power of a test

- The power of a test is the probability of rejecting the null hypothesis when it is false.
- It is given by 1β where β is the probability of type II error.
- It is therefore the probability of not committing type II error.
- The power function of a statistical test of hypothesis H_0 against an alternative H_1 is given by:

$$\pi(\theta) = \alpha(\theta)$$

for values of θ under H_0

$$\pi(\theta) = 1 - \beta(\theta)$$

for values of θ under H_1

Example

Let p be the probability that a coin will fall as a head in a single toss in order to test

$$H_0: p = \frac{1}{2} \text{ vs } H_1: p = \frac{3}{4}$$

The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the power of the test.

Solution

• X forms a binomial distribution with parameters n=5 and p=0.5 thus

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{5-x}, x = 0, 1, 2, 3, 4, 5$$

- The Rejection region $\omega = \{x : x > 3\}$ and $\bar{\omega} = \{x : x \leq 3\}$
- $\beta = P(x \in \bar{\omega}|H_1 \text{ is true}) = P(X \leq 3|p = \frac{3}{4})$

•

$$\sum_{x=0}^{3} {5 \choose x} (\frac{3}{4})^{x} (\frac{1}{4})^{5-x} = 0.3671$$

• The power of the test is $1 - \beta = 1 - 0.3671 = 0.6329$

Thank You!